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IMPACT BUCKLING OF THIN BARS IN THE ELASTIC RANGE
FOR ANY END CONDITION*

By Josef Taud
SUMMARY

Following a qualitative discussion of the complicated
process lnvolved in a short-period, longitudinal force ap=-
plied to an originally not guite straiszsht bar, the actual
process 1s substituted by an idealized process for the pur-
{ pose of analytical treatment. The simplifications aro:

‘ the assumption of an infinitely high rate of propagation
of the elagtic longitudinal waves in the bar, limitation
to slender bars, disregard of material damping and of ro~
tatory inertia, ‘the assumption of consistently small elas-
tic deformations, the assumption of cross-sectional dimen-
sions constant along the bar axis, the assumption of a
shock=load congtant in time, a2nd the assumption of occon-
tricities in onc planoc.

Then follow the mathematical principles for resolving
the differential equation of the simplified prodlem, par-
ticularly the developability of arbitrary functions with
steady first and second and intermittently steady third
i and fourth derivatives into one convergent series, accord-
| ing to the natural functions of the homogeneous differen-
! tial equation.

! - The problem 15 resolved for one type of support corre-
! sponding to the third Eulerian loading condition (pin-ended
{ at one end, clamped at the other). The resolution for sup~-
4 .port.conditions conformable to the first and fourth Euleri-
§ .an load case, may be effected in the same fashion, while

{ substantial simplifications are afforded for the Koning—

f Taub andlysis which treated a type of support conformably

! to the gecond Eulerian load case.

1]
*¥Stossartige Knickbeanspruchung schlanker Stabe im elas-
tischen Bereich." ILuftfahrtforschung, July 6, 1933,
Ppe. 65=85,
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The premise is a .course of the center line of the bar
in unstressed condition such that precisely the fundamen-
tal oscillation occurs during the shock, thereby ensuring
different bar forms under different shock loads. But ap-
propriate choice of one factor makes the mutual deviation
of the ordinate of the bar axis small enough so as to allow
a mutual comparison of the test data for different shock
loads without appreciable orror. Strictly speaking, the
data are applicable onrly to the chosen bar shapes. As to
the effect of a minor change in bar shape, we refer to the
appendix of the Koning-Taubd report on the same subject (ref-
erence 1),

The resolutlon of the d1fferentia1 equat1on affords

shock load. After the actusl shock, free oscillations oe-
.cur whose amplitudes are given through the condition (deé-
fleetion and rate) at the end of the actual shock (expan-
sion ‘in series, acdcording to the natural functions of the
free oscillations). 4An upper limit is established for the
monments after the actual shock. The investigation is ef~
fected separately for shock loads smaller and greater than

the -Bulerian load for mathematical and physical reasons,

. The results are evaluated by comparison with the mo-
ments set up by a static load eguivalent to the shock load.
Tho determination of those moments for loads greater than
the Bulerian loads involves great difficulties, however,
with stated eccentricities, so the interpretation of the
results above the Fulerian load is effected by comparison
of the data for the range of shock loads below the Euler
load.

" The results are as follows: The ratio of maximum mo-
ment due to shock and static load is for stated eccentric-
ities unaffected by the magnitude of the latter, For short
shock periods this ratio is less, for longer shock periods
greater than 1, Its maximum generally occurs only after
the actual effect of the shock load (that is, during the
free 030111ation§) when the greatest defleétlon poss1ble in
The maximum value furtner increases with. 1ncraased shock .
loads in two (at shock load = 0) cases analyzed herein to
3.4 (at shock loads abproaching the Bulerian load). The
excess stresses pertaining to identical shock loads due to
the shock=like stress: dccreaso on the whole with increased
shock 1oads, These roesulbs refor to-shock loads 1ower than
Eulorian loadsw. . S

e 1
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Wheréas thoe moments in shock loads below BEulerian

‘Yoad attain a maximum which is not exceeded durlng any

shock period, they increase unrestrictedly with the shock
period at shock loads above Hulerilan load.

.. In contrast with static loads, the EBuler load may
equally be oxceeded in shock loads when the shock porlod is

adequately short.,

The results are illustrated by numerical examples and
the range of validity of the approximated differentilal
equation proved thereby.

I. INTRODUCTION

Whereas the behavior of structural components in pure-
ly static stresses is comparatively well known, the same
may not be sald of dynamic stresses., The probadble cause
is that the investigntion of dynsmic stresses due to ap-
pearance of an additional dimension, that is, the time
factor is, a priori, more complicated than the study of
conditions produnced undor static loads,

Ag a matter of fact, stress and deformation conditions
of structures are alweys due to outside interferences which
change with respect to time. Strictly speaking, their
study therefore always affords a dynamlc probleme. On the
other hand, the time rate of change of these outside intere
ferences is, in many cases, so slow that the ensuing inner
mass forces are negligibly small relative to the other
(elastic or plastic) inside forces, with the result that
the conditions may be accurately enough described in a sim-
ple static investigation. Thls is, however, no longer per-
missible in cases wherein the outside interactions are rap-
idly changing.

In dridge, and specifically in airplane design, how-
ever, the occurrence of shock-like load effects is very
frequent, so that the static test supplies no longer sny
reliable basis for the estimation of the strength of the
structural parts. While high factors of safety and the
assumption of an impact factor assures the safety of
bridges, even without extensive dynamic studies, this con-
dition does not prevail in airplane design on account of
the weight increase involved. The problem of the alrplane
designer is to ascertain the true inner and outside loads
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and to. fit the dimen 1ons to the loads as closely as pos=-
Sibleo ' o E

The present paper, an attempt in this direction,
treats the hitherto neglected problem of dynamic stress,
and specifically the behavior of an .originally not quite
straight bar in buckling under- shock load., The study was
sPprompted by a report of C. Koning on the same subject (ref-
erence 1), and which was' translated into German and ex-
tended by the writer in collaboration with the DVL and the
Rijks~Studiedienst voor de LuchtVaart, Amsterdam. '

IT. NOTATION

Q kg, shear.
.8 fff kg, tension.

P =.f X kg, compression,

Pp  ' 5 f“g, Eulerian buckling load.

é,ﬁf kg, sgpport reaction perpendicular to compres-
sion,.

M ' kgm, bending moment,

x Iy abscissa measurgd parallel to load P.

5 - tj}?ﬁ;: abscissa measured parallel to bar axis.

y - m, | ordinate of bar axis in unsfressed condition,

”  € m, zamplitude" of bar axis in unstressed céndi-

ion,.

Mx = place function.

n=Ng Mt M@, deflection

1unt = time function.
) m, sag of point of application of compression P,
L- m, bar length (chord length in approximations).

o m,  chord length,.
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m,

coordinates.

subtending slope éf-elastic line.
radius of curvéﬁure of elastic line..
cross~sectional area.

axial moment of inortia of area.
inertial radius.

modulus of elasticity.

shear modulus.

density.

time coordiﬁate.

shock period;

time coordinate.

period of free transverse fundamsental
lat ionn .

frequeincy.
phase shifting.
proper values.
core functions,

see equation (35).

‘digtance of pulsating shear from origin of

oscil-

ratio of compression to Eulerian buckling
load, i.€e, the reciprocal value of the

statlc buckliag strengtn.

ratio of shock period to oscillation period
of the free transverse fundamental oscilla-

tion.

ratio of absolute mazimum moment in the

statle and dynamlic case.
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ST constant valne (compare equation (31)).
Ap, nth coefficient of a series expansion.
4,8,0,D,A,B,c,,¢5,k;,%s, integration constants.

Indicess
myn=1,2,3s¢e¢- the natural figures.

0 . refers to gquantities occurring with tension
P = 0.

E, quantities occurring with Bulerian buckling
load.

T,r denote gquantities to the left or right of

. £.
X, place function.
£, . time functione.

Signs of differences:

N
MNg'

Ng" denote the 1lst, 24, 34, 4th derivative of
ng'' MNg: according to =x.

'ﬂ-- mny

htt H¥ denote 1lst, 2d derivative of my, accord-

ing to %,

IITI. QUALITATIVE DISCUSSION OF PROCESS

The qualitative description of the buckling stress
due to shock load is as follows:

An arbitrarily supported, originally unstressed, elag-
tic bar is suddenly subjected to a longitudinal force con-
stant or variable with respect to time., If the bar axis is
straight and the load is coincident with it, a so~called
"dilatation wave" is produced in the bar, i.e., a longitu-
dinal wave consisting of compressions or thinnings (or
groups of such waves) which, as known, travel at sonic ve~-
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locity /EB/p 1n the material of the bar. Arrived at the

other end, the shock wave is at least partially reflected
on account of the there existing discontinuities in densi~
.ty and elasticity. If the end is clamped fast, or consists
i of a free end dipped in a medium of zero density, the re-
flection is complete., In the further course the original
(primary) waves superpose themselves onto the reflected
" (secondary) waves. When the excitation of the shock waves
‘i's harmonic and in absence of material damping (i.e., zero
viscosity of material) the superposition of tho primary and
completely reflected secondary waves produces so-called
standing waves, that is, waves with fizxed nodes. 3But allow=-
ing for material damping and energy scatter at the points
of discontinuity, there still remain apart from the stand-
ing waves which are of lower amplitude in this case than
before, the so~called "advancing waves.," A detailed re-
port on this phenomenon - although limited to tramnsverse
w?ves - has been published by Katsutade Sezawa (refercnce
2)e

In unharmonic shock excitations the type of superposi-
tion depends on the type of excitation. The case, for ex-
ample, of a bar hit by a certain mass at a certain rate,
and of a bar struck by a mass of zero velocity ("suddenly
loaded bar") with disregard as to viscosity and presumed
maintenance of energy (i.e., absence of energy scatter at
the points of discontinuity of density and elasticity) has
been treated by several authors (reference 3). Once the
first disturbance, moving at the rate of A/E}p has cov-
ered -the length of the bar, the latter is in a variabdle
stress condition throughout its length both with respect
to time and place.

After the shoek, that is, after the contact between
the shock mass and the bar has ceased, the bar evinces
wave motions corresponding to the free oscillation forms,
The initial conditions of this period of motion are con-
tingent upon the condition existent at the end of the ac~-
tual shock. The stress condition of the bar is equally
variable in time and place in the periocd after the shock,

Now, if the bar axis is not exactly straight or if
~the shock load is eccentric, the results are bending waves
in addition to the longitudinal waves, The rate of motion
of thesé waves is, however, contrary to that of the longi-
tudinal waves, dependernt upon the wave length. TUnless the
frequency is unduly high, it is inversely proportional to
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the wave Iengbhs; at high freguencies and when the waves
consist of-various groups, other laws are applicable. With
~vanighing wave length the rate of motion approaches.that

méf.the Rsyleigh waves (v = OQ9194K/F%,' reference 4), The

rate of movement of the bending waves is also considerably
lower than that of the longltudinal waves. 4&s to reflec-
“bion and superp031t10n of bending waves at points of dis~
1cont1nuities, the same laws apply as to the longitudinal
ldwaves. o

i By virtue of the fact that the longitudinal waves
move faster than the bending waves, the point of origin of
the latter is not only limited to the shocked bar end in
the ‘case of the bar hit by a longitudiral force, as 1is the
case for the longitudinal wave. Rather a bending wave
comes into being successively at every point of the bar,
as'-soon as the longitudinal wave has reached the particu-
lar point, Each one of these bernding waves spreads to

the right and left of its point of origin to be reflected
‘gt “the points of discontinuity of density and elasticity
&nd to superpose themselves upon each other, But the: rate
of movement of these bending waves is in this case unlike
tHe usual bending waves, since they move in a more or less
compressed part of the bar rather than in an unstressed '
bare -According to Sezawa (reference 2), the rate of mo~- .
~tion of the bending waves decreases as the compression in
thé bar increases. For buckling stress due to shock, the
difference in rate of movement of the longitudinal and the
transverse waves will therefore he even greater than oth~
erwiso. -

According to this gualltative discourse, the process-
es in shock loads in duckling are very complicated, and to
follow them mathematically regquires various simplifying
assumptions.

IV. SIMPLIFYING ASSUMPTIONS

l, The first assumption is infinitely great rate of
novement of the longitudinal waves, or in othér words,
that the bar reaches longitudinal stress condition within
infinitely short time., Then the bending waves emanating
from the differeat points of the bar are simultaneously
excited rather than successively, and instead of a wave
motion there are standing oscillations to begin with.
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This assumption 1s the more applicable as the frequency of
the shock motion is lower and the shock force greater, be-

.cause both factorg tend to lower tire rate of movement of.

the bending waves but not that of the longitudinal waves.
Moreover, it is anticipated that the conditlons of the og-
cillating bar corresponding to this assumption will more
closely approach actnal conditions a2s the time interval
between entry of disturbance, i.c., start of shock and end
of shock is greater. :

On these premlises the analysis 1s restricted to the
effect of the bending oscillations. The stress due to the
longitudinal force is readily obtained by dividing the mo-
mentary shock load by the cross~sectional area.

24 The studﬁmﬁs confined to the investigation of bucke
ling due to shoclk slender bars. From the cited qualita-
tive analysis it follows that the energy of the shock mass
goes partly into bending and partly into longitudinal os-
cillation energy of the bar. The component of the bending
oscillation increases with the slenderness of the bar as
seen hereinafter,.

A bar pin-ended at both sides (fig. la) is subjected
to static compression P. Presumedly, the bar was not
quite straight at the start and the deviation of its axis
from a straight line corresponds to a half sine wave. It
can be proved that the elastic line is sinusoidal in this
case also. With the arc length as independent variadle
(reference 5), we have:

y = ¢ sin % s (1)
_ "
N = Mpax Sin 7 ® (?)
Horeover, according.to figure 1lb: -
a +
_(_’ﬂaﬂ_é’)_ - sin (3)
ds :

-The - chord length follows from

o= fdx = [ cos a ds : . (4)
o

I?'secdnd approach cos o may be replaced by (reference
5):
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"or, because of (3), by

cos o = 1 = L'[%Qn_t_xg}a.
2 ds

,This value of cos o written in (4) gives with due

"4lléwance for (1) and (2):

1: . 2 2
o =;/_[l'— % (e + 2 ¢ Nmax + ﬁ;ax) %5 cos=® % s] ds =
: )

] . :
=1 = %i (e® + 2 ¢ Mpax + NRax) -

By the same argument the chord length prior to loading
is:

Consegquently, the sag of the applied moment of the load
is:

ﬂ‘z
§ = 0p - 0="=

The deflection in bar center in this case is conform-
able to the Koning~Taub report (reference 1)

MNmax = e (6)

with Py = T——=*-* the Eulerian buckling load.

Tith a = g%, (5) and (6) give:

a(2 o 3,)_ (7)

5 = n®_¢?
41 (1 - a)

This formula yields 6/e2 versus |, whereby it is
to be remembered that 1 implicitly occurs also in Pg.
The curves obtained for stated P, B, and J values are on
the order of those shown in figure 2. As the slenderncss
of the bar increases the displacement § of the applied
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moment increases much more rapldly than linear even when

€ is assumed as being constant. On top of that €, that
18, the probable maximum deviation of the bar from straight,
is frequently assumed so much greater as the bar is thinner,
(Muller-Breslau, for 1nstance, figures with an initial ec~
centricity of 1/200) :

Thus, while the sag of the point of applied moment in-
creases with the length of the bar at a much faster rate .
than linear, that due to the longitudinal compression in-
croases only linearly with the bar length (Hooke's law).
Thecrofore, the more slender the bar, the greater ths deo-
flection compared to the displacement of the applied mo~
ment of the force due to compression. Agsuming for sim-
plicity that the force P . is constant in time, the enorgy
requlired to deflect or compress the bar is simply propor-
tional to the defleetion or compression or, in other
words, the ratio of both is actually so much higher as the
bar is more slender,

Hence the omission df'thellongitudlnal oscillations
appear still more justified since the ;nvestlgatlon is
confined to slender bars,

3e. The damping effect due %o material viscosity is also
ignored as its effect will be rather negligible in the

short period processes involved here, although its inclu-

sion should cause no insuperadble difficulties.

4. All investigations retain their val1d1ty only in -
stresscs below tho elastic limit,

5. The deviations from straight line as well 'as the

- deflections are assumcd to be small quantities compared to
“the length of the bar, so that the curvature of the elas-

tic line may be accurately enough defined with d?ﬂ/dx
The scope of valldlity of this assumption 15 analyzed in a
subsequent section, .

6e We assume a bar with gectional area constant along
the bar axis, with constant inertia moment and elasticity
modulus,

7. The transverse (bending) oscillations are treated

as plane problem, i.e., all deviations from straight line
are presumed to lie in one plane.
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sod-8eAs to-the time rate of shock, it is siﬁﬁly assumed
that the shock®load is"a constant indepondent of time,

rsAY¥thoughithis® may not exactly correspond to the actual
. .shoek of landing of an airplane or other similar shock
loads, it is a good approach in the majority of cases.

9. The effect of the rotatory 1nertia is disregarded,

Ti;e., the term p J ——BLJH— - is deleted in the differ-

N 3 ¢° .x
eﬁtial-equation.

' V. DIFFERENTIAL EQUATIOWS AND BASIS OF RESOLUTION

1. Generalitles

' The approximate differential equation is
&, 2 2
gn _ x 2 In_.x Ty
Eg &2 -x 23+ 7 atg =% (8)

(X must be written with positive sign as tension.) The
resolution of this eguation, i.e., the determination of the

‘transverse oscilliatioans of a bar loaded under constant ten-

sion X, whose center line in unstressed condition is

y = £(x), 1is readily tractable for the case of a bar
hinged at both ends, by expanding y = f(x) in a series
whose individual terms correspond to the natural func-
tions of the free bar oscillation,

For the generalized case (i.e., any support condition)
the expansion of f£(x) conformably to the natural func- .
tions.of the -free bar oscillation is abortive. It rather
necessitates the dovelopment of the right~hand side of (8)
accordlng %o the:'natural functions of the homogeneous equa-
tion

PR N WA - N oy
BIse - ez e ol T (9

the differential equation of the straight bar stressed in
tension X. It possesses mutually orthogonal natural
functions, from which arbitrary functhns may be developed
in convergent series.

The exact proof of this dovelopability follows from a
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Hilbert theorem (reference 6), conformable to which any
function (reference 7), according to the matural functions
of a continuvous symmetrical cors may be expanded in a con~
vergont serles,

The source~like representation of the elastic line 1is
obtained with the so—~called "influence function" (Green
function). This is the equation of the elastic line with
x a8 independent variabdle due to a force 1l_acting at point
x = £. According to whether xS £ or =x2Z £, the re-
sults are two different terms, which are denoted by
Ki(x, § and EKp(x,£), respectively. Maxwell's law of
mutual displacements states that a force 1 acting at point
. causes the same deflection at: x as a force 1 acting
at" x 'in £. Therefore, the influence functione Xj(=x,¥£)
valid for x € §{ and Kp(x,{) valid for x 2 { are sym—
metrical - (the appendix gives as examples the symmetrical
influence functions for the support conditlons correspond-
1ng to the second and third Euler case) = that is,

Ky (=,8) = Kp(&,x).

But this influence fuaction is exactly the core function
of the integral squation, thus proving the developabillty
according to natural functions,.

Maxwell's law adduced as proof of the valldity to a
bar compressed in constant tension and bent in arbitrary
shear follows from the fact that the premise of Maxwellls
law: the law of linear superposition is equally valid,
provided the tension remains unaltered., The validity of
the law of suporposition follows from the linearity of the
differential equation (9), which is briefly discussed in the
next two sections with particular reference to the corre-
sponding natural functions and period cquations for the
support conditions characterizing the four BEulerian cases.

2. Transverse Oscillations of a Straight Bar
. Loaded in Tension
a) Solution of the homogeneous differential équation.-

The particular solutions of synchronous character of (9)
in conformity with the first assumption, are:

n = Ng Nx
with my = £(t) and mx = f(x). Putting

m=sinp ¢ ot*
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in (9), yields the tvpical equation'-

EJ K «-XK -pFps=0 (10)

of the four roots,

[T --2 F
i 2EJ 4 E® J EJ

“of}(la)ﬁ' K, = £ A are real for real values of p," and

two, ..Kp ﬁfi'hi are. imaginary, and this holds for posi-
.tive .X (temsion) as well as negative X (compression).
Thes. the solutlon reads: _

s 2

”Z?ﬂ A ch Ax+Bsh\hz+ 0 cos K x+ D sin A x (12)

.7 For imaginary values of p, we obtain four real
roots, Ky =+ A1 and Ky =+ A1l with positive X when
assuning that

X2 pF
——————— —— p? 13
PR ‘EJ D (13)
For tension loads (12) then becomes
Mg = & ch Ax + B shAx + C ¢ch Ax + D sh Ax ) (14)

and for compressive loads,

nx = 4 cos?xx-%-B sin A\x + C cos Ax + D sin Ax (15)

Inaginary values of p occur according to VI,3,Db
in compression exceeding the Eulerian load, The same sec~
tion also discloses that (13) is met so long as the com=-
pression is not in excess of twice the Eulerian load,
Compressive stresses beyond this double Eulerian load are
without the scope of this report, -

It also follows from {(11) that

Klzl + Kza = )\.2. [d ._}\.2 = R (16)

whoréby (9) becomes

[(2a N -x) X m +pFrnmn, =0 (17)
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From (16) follows AN = A when X = O. Without ten-

-...sion the term for my thus becomes

Mx = A ch Ax + B sh hx + C cos Ax 4+ D sin Ax (18)
and (17) reducss to

(EJ N my +p Fhy) mg = 0 (19)

e e e S e S,

gerlod equation for various support conditions.- In the
following the constants in (12) together with the natural
values of A and A are analyzed for the support condi~
tions of the four Euler ‘Cas8s. :

1. Buler case: one end fixed, the other free.
Boundary conditions: my =0 and ngx'=0 for x=0

-~

ng"=0 for =z =L.

The fourth is obtained for x =1 as follows:
For x =1

Mmx! = tan a ~ sin a ~ a,
hence the shear,

Q=+~ Xsin o=~ X ng'.

On the other hand,

| Q== EJmng™

thus -
Mz~ Mx' =0 | (20)

when =x = 1., |

From the boundary conditions for x = 0 follows:

A+ C =0, conseguently ©C =

AB+AD=0, " D=

'>ﬂ$’>




e
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Therefore,’
N = &(ch Ax - cos Ax) '+ '.B(lsh AX = % sin A x) 121)
With =x = 1, the boundary conditions give:
ne"=A(N° ch AM+¥ cos AW+B(X® shAl+M sinAl)=0  (22)

and 3 ;% N 3 Y Y
. AN sh Al= N\ sin X1)+B(X ch Al+AN cos A1) -

- %_‘[K(:X‘sp _M.+7§‘ sin A1)] +B(A chAl=) cos A 1);0_‘

or, with alldwance for (16)
.A(I\”?;2 sh "7\.‘?.—3:?\2 siﬁ_}\‘l)+3()\,-}_\2 ch N1+ X cos 3:1):0 ’ (23)

So that A and B do not disappear, the denominator
determinant of (22) =znd (23) must be zero:

N ch A+ N cos Al A sh Al+AN sin AL|

=

}\;\2 sh ?\"L--iu\g sin Nl )\‘7‘\2 ch )x7a+7\:.3 cos Al |

The evaluaticn of this determinant gives the tran-
scendent period equation: :

2 BN +(F +5X Yor AL cos AL =R Yeh Al sia A1=0  (24)

which, together with (16) gives the natural values of \
and A for the different longitudinal forces,

For X =0, A= \ and (24) becomes
ch Al céﬁil + 1 = 0.
2+ Buler case: both ends hinged.
Boundary conditions: n#;o and mzx"=0 for =x=0
Nx=0 and mnz"=0 for =z=1
For x= 0, we have:

A+ C

Ii

o .
s e -2 .} hence, A = 0 = 0;
}\« A - >\. C =0 a '
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for x=.1, we have:

B sh A + D sin AL =0 ' . (25)

Nx
rnx“

il

X Bsh Al-% Dsinil=0 _ (26)

The condition, according to which the denominator de-
terminant of thess equations must disappear, gives the pe-
riod equation:

sh A1l sin-il =
o This equation is fulfilled for sin Al = O, that is,
- for '

on am.

K:: 3 -L, e 8 o8 -L

3

From (25) and (26) further follows 3 = O, whence
the validity of

Mg = D sin X\ x (27)

Since this equation containsg omly A, the proper functions
in the second Buler case are unaffected by the longitudinal
force. Solution (27) is equally valid when no tension ex-

ists. TFor this reason it was possible in the second Euler

case treated in the Xoning-Taub report (reference 1) to ex~
pand the right-hand side of (8) conformably to the natural

functiong of the free transverse oscillations.

3. Euler case: one end clamped, the other pin-ended.
Boundary conditions: my=0 and mnx'=0 for x=0
Nx=0 and mng"=0 for =x=1

" The conditions for =x = O are the same as for the
first EBuler case, hence (21) is valid.

For x= %, we have:

Mgz=1 = Alch Al=cos A1)+B(sh A1~ in Al )=0 (28)

>l

Ny = AKX chAl+h cos AL)4B(X sh AL+AN sin Al)=0 (29)
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The conditidn of vénishing denoninator determinant
affords:

(eh Al-cos AL) (N sh xtfxx sin Al) =
- (sh A1 - % sinTxl)_O\f3 ch Kl+7f cos A1) =0

- and, after appropriate conversions, the transcendent peri-
0d equation:

tan Al - th Al = O (30)

>l

The roots of (30) give the natural values A and » for
the different X wvalues.

With p = %, (28) yields:
W= - ch Al = cos A1 (31)

A —

sh Al= = sin)l

. A

which, in conjunction with (28) and (29) gives:
ch Al + sh Al = 0 (22)

cos _7_\1+p,2§ sin Al = 0 (33)
A

For vanishing longitudinal force (X = 0) (30) becomes:
tan A - th Al = 0 (24)

since A\ = A.

Since this paper treats the third Euler case as an
example of the generalized method, the determination of
the natural values requires a more detailed discussion;

The introduction of

P R, — (35)
changes (16) to I
N =X (1=~ a) (36)

and (30) to
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_ tan Nl= e th (KLNIE - a) = (37)
: _ — .

thé roots 'X 1 of this eqvatlon are obtained as inter-
“sections of the ecurves

£ (N) = tan N1

and

T (a,—i.) = 7—::&*;: th (N1 ﬁ - a) (38)

1l - a

For a =1, T (a,\) Q. consequently,

)
_ 4 orth (N1 1 - a)]
F (a,N),., = da _ = N
a=1 a —
wmvt-e

is a straight 1line.

For a >1 (38) becomes:

Figure 3 shows the functions £()\) and T(a,N) plotted
against A1 for several a values (parameter).

L 5 9
= - y — TT e w e g TUmmTTEm Ty eeee
>\O-L 4'” P ’

is accurate enough.

All these values are at least within 0.1 percent accu~
racy of

Mo = = 1
so that,

,n‘xo =, A(Ch ')\.o X - COS: }\.o- X - sh >\'0 x + S'ln )\_°-x) (39)

is also sufficiently cxact,
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In figure 4 the A1 values for the fundamental and
the first higher oscillation have been plotted against a.
Up to about a =1 the Al <values show a slow incroase
with 4&a; %beginning at a > 1 the mean rise is gteepor
and the curves coil about a mean curve (dashes) which, ex-
pressed in formula, is :

o= L (40)

l-,/a-1

wvhere n = 1 =”fundameﬁta1 oscillation, and n = 2 = first
higher oscillation, ZEquation (4d) is exact for whole mul-
tiples of ﬂ/2. For a =2, ANl = o,

4. Fuler case: both ends clamped.
Boundary conditions: my =0 and mny'=0 for ==0

rqx=0 and .'ﬂx"—:O for x=1.

The conditions for x =0 are, as in thoe first Euler
case, so that (21) is applicablo.

For x= 1, we have:

- : A —
Nx=1 A(ceh Al-cos AL)+B (sh Al - -:-X gin Al) = 0

n;_LzA(K sh'Klﬁx sin X1)+3(A ch M=) cos Al) =0

The disappearance of the denominator determinant stip-
ulates:

- A — — —
M ch Al-~cos Al)a-(sh Al - f sin A DY(A sh AlL+M gin Al) = Q.

Thus the period equation is:

2(1 - ch Al cos A1) + ——X%im— sh AL sin Nl =0 ~  (41)

The A and A values are obtained as roots of (16) and
(41).

0, A=A, so that the period equation be-

For x
comess —
ch Al cos Al = 1,
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SOLUTIOV OF THE UNHOMOGENEOUS DIFFEREHTIAL EQUATION

1. Generalitles

With the proper functions derived in ' 2 we proceed
in the general case by developing for given original bar
form y(x) the right side of (8) according to tho proper
functions of (9) and then: ‘pose a corresponding equation
for the place function Nx in tho solution m = Mg Mx

conformable to the natural functions of (9)..

In view of the comparatively complex form of the nate-

- ural functlons together with the tedious serles develop-

mént of X %;% ,. this method would, however, become guite

troublesomes Added to this is the fact that different
functions would have to be set up for the original bar
form y, even if intending to allow for the probable cases
only. It must therefore be understood that the investiga-
tion - exactly like similar ststic studles - is feasible
only for stated bar forms and that the conditions antici-
pated for -other forms must be arrived at by deduction from
the obtained results.

Under these circumstances the thought lies close to
discuss the general method with such a bar form as to lead
to mathematically convenient formulas. The most elementa-
ry case is a bar form developirg only the fundamental os-
cillation during the shock period. But, excepting the sec-
ond Fuler case, the natural values and through them the
form of the fundamental oscillation differs for differoent
X (sce V,2,b - flgse 3 and 4), Accordingly, different
bar forms are necessary for differeant X, to insure the
appearance of the fundamental oscillation only. On the
other hand, an analysis which presumes variable original
bar forms as X increases, would be uansatisfactory as it
would, to be sure, afford a comparison of the bar under a
stated static load with an equivalent dynamic load, while,
however, affording no possible means of comparing the proc-
esses occurring under different longitudinal forces.

However, we shall use this method for the third HFuler
case,* which is being analyzcd to explain the general meth-

#The period eguation of the third Eulér-caso is much more

simple than than that of the first and. fourth Euler case
(see (24), (30), and (41),) thus making the mathematical
treatment of the third case somewhat more convenloent than
the first and third case,
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od.” It is possible to show that with appropriate handling
of a constant the bar forms at which precisely the funda-
mental oscillation occurs are so little unlike under dif-
ferent longitudinal forces ags to malkke comparison of the
results obtained for different longitudinal forces possible
nithout great errors.

As cOncerns the effect of slight modifications in the
bar form, we refer to the appendix of the report cited in
refercnce l.

2. Choice of Interference Function (Bar Shape)

, To insure .that the "curved" bar executes the fundamen-
tal oscillation of the straight bar the second derivative
of its original form must be chosen conformabdly to the
firet natural function of the straight bar.

: -]

Accordingly, we choose for %;

32y - 2 _ ; Al -
25 = " €i1My" [eh A; x~cos Ay xHu (s8h A} x = ﬁ: sin A;x ) ]
1
(42)
which up to constant €31, agrees with the first natural
function of (9). (Cowpare (21) and (31).)

Then (8) resolves to

— A —_
=Nt Mx=Ng Lch Ay X~cos A, xHu (sh A, x = i%-Sin Az )] )
(43
Writing (42) and (43) in (8) and omittlng the index 1,
we have:

[(BI A -X)N ngHIFNL+X € M1 (ch A x+L sh A x)
mey SR Y X -:2 — A —
- (23 AH+XIN myrpP Me+X € N J(cos N x+u;§ gin A x)=0,
or, because of (18),
[(ET N + XNy +p PRy +XerAjme=0 (44)
Now we try to ascertain to which original bar fopm
the chosen function (42) corresponds, i.e., find the trend

of the eccentricities ¥y to ensure that the shock load X
exactly produces the fundamental oscillation.
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Y=« € |2 ch ANx+ cos Ax+ [ ki? sh A x +.
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~Twice integrating (42) gives:
T2 =2

>\2

vee Benn s ez u( Ko n

}\‘2

+—§ sin A x) + ¢y x + ez (45)
A .

Now we can prescribe certain conditions for defining
¢, .and c,. The nearest one would be to require that the
boundary conditions for function ¥y agree with those of
the elastic 1line of the stressed bar.

The conditions then would be:

l, For x =0 y =0

2. " =0 . =0
* dx

2. " x =1 ¥y =0
. FES

v oxz=1 Y¥og
dax

With only two coastants availadble, however, only two of
these conditions can be met. Thnere are (4/2) = 6 possi-~
bilities.

We select that for which conditions 1 and 2 are ful-
filleds It is simpler in many respects than other forms,
Subseguently, it is shown that for it the maximum moment
necarly always occurs at the point of fixity., Added to that
is the ready comparison to bar formg under different longi-
tudinal loads cited in VI,l., For this bar form, it is

c, ; € W (Zi + K)
and

Cp =

I
™
N

>
i
+
=]
~

consequently,

11>
m
(=
[=1
i
H

~
1

- (nl;:; + 1) (L + W A x):] (46)

A

?J)
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The evaluation of (46) gives the curves shown in fig-

ure 5. The values = % for =x = 0.5 1, x = 0,751 and
x = | proportional to the ordinatos of the bar form are
plotted versus a. The ordinates for =x = 0,251 are too
small t0 be representable at the scale used in figure 5.

. For a = 1, which corregsponds to the Buler load as
tension, as shown elsewhere, A\ = 0 %because of (36), and

W= % because of (3l). Thus (46) may be expressed as

_ . _ —
¥ o= = € [%; (ch N x~1)+(cos A x-1)+ %? plsh AN x=A x) +

+ ;—>ﬁu. (sin M\ x=A x):]
A
aftcr which we detecrmine separately the unknown terms,

[2.\.'_2_ (Ch AN T - lﬂ)\_-—o = —}\-2 §..I_l.éb__.x_ = 0

regulting for a = 1. Furthermore, according to (33)

A ==A cot N1

and consoquontly,

.B... = z._ q?.?._z_i] Tz e 02
>\.2 A=o }\,3 J}\,=o

The third term in the expression for y and through
it value y itself becomes w. Thus the curves (fig. 5)
have a point of discomntinuity when a = 1 or, in other
words, the original bar form is undefined for a =1, so0
that the case a = 1 must be excluded from the investiga-
tions.

Figure 6 gives the original bar form (corresponding
to (45)) for a = 0 at exaggerated scale. We use it as
original form. We now reduce the bar forms resulting from
(46) for different a in such a manner that the maximum
ordinates (= ordinates for x = 1) agree for all a val-
uses with the maximum ordinates for a = 0, 3By virtue of
(32) and (33), (46) gives the maximum ordinate at

c=c A +1)Q+ (a7
vuex = ¢ (Mz PECERRNS (47)
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Let € = €, for a = 0; then; because of

'Xo L= 21" % T and Mg ~ = 1

it gives . |
[Yma,x]a__-—_o = 2 €0 (1 had %TT> = = 5,86 €o (48)

To assure the same value of Ymax for other values of
a also, we putb:

5.86 eo 5.86 l - a

- =3 = - €, (49)
(a- + 1)(1 + 0 A1)

€ =
. 1+ N1 2=o=8

€

Figure 7 shows the reduction factor T against a.
o}

With this choice of ¢, (46) manifests bar forms for dif-
ferent a which practically do not deviate from each oth-
er, as seen in figure 8, where = y/eo for x=1, x =

31 and x =271 proportional to the ordinates of the re-
Guced bar form®are plotted against a. The discrepancies

of the curves for =x = % 1 and =x = % 1 from a line par-

allel with the axis of abscissas are very minute. Thse
greatest percentage of discrepancy_of the ordinates among
each other obviously occurs when % < ;, which is not
shown in the graph. In the rance of O <a < 1.,09.(higher
a values should be of no practical interest) the maximum

discrepancy among the g% ordinates amounts, for instance,

for x = % 1, to about 15 perceant., Admittedly, the cri-

terion of the approach is not this figure Put the maximum
error referred to the maximum ordinate. This, howevser,

does not occur at low %, but at % = % and in the range

of O « a < 1.09 1is less than 2.5 percent, and in the
range of 0 <« a < 1,05 evon less than 1.6 percent.

This proves that bar forms chosen according to (46)
and containing the ¢ value given in {39) show such lit~
tle discrepancy as to render couparison of the computed
results possible without committing any great errors.
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3. Solution
With a view to (35), (44) gives for my:
pFHy +ET A (L-a)my=aBJd Ne (50)

There are three distinct cases:
(a) a < 1; () =a > 13 (e) a=1.

We confine ourselves to cases (a) and (b), as the bar form
"y . is not defined for a = 1. (§ee VI,2.)

The physical interpretation of these cases is as fol-
lows: Let Py = Eulerian buckling load, \g = correspond-

—

ing A value, and agy = ratio of lomgitudinal load to Eu-
lerian load. Thon

X X
ag = = 3= T = ————=—g (51)
Pm EJ A
or, because of (28)
. =
aE = a %*s— (52)

It is shown in VII,1 that Ag agrecs with the value
of A for a = 1; (52) is graphed in figure 9. For ap =
1, it 48 a = 1, 80 that our two cases (a) and (b) may
also be expressed as .

ag <1 and ag > 1.

Physicaliy, this means:
The shock load 1s lower than the Eulerian load;
The shock load is higher than the Eulerian load,

a) Shock load lower than Eulerian load.~ With the as-
sumed initial conditions,

nt = 0 and ﬁt =0 for t =0

the resolution of (&) gives, analogous to the second Buler
case in the Koning-Taudb report (referencs 1):
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- a

p=% /B /1-Ta  (54)

is the frequency. With index O denoting the quantities
referred _to the free fundamental oscillation (a = 0), we
haves

Ny = T= % € (1 - COS D t) (53)

‘where

22 -
P = po ;‘- /1 - a : (55)

Tigure 10 shows the ratio él versus ay for the fun-

: _ ' 0 , :
damental oscillation. As in the second Euler case, the
frequencies drop as the load increases and disappear alto-
gether when a = 1.

Thus with (43) and (53) the resblption of (8):

n=Mg Mg = T—%—; € (1L - cos p t)
[ech A x-cos A z+u(sh A x —-%%sin X-x)] (586)
At the end of the shock t = T, it is:
SRR - T -
n 72— € (1 cos pT) |
[ch A x~cos X.x+u(sh ANx - % sin N x)] : (57)
g% = Tg:—; €p sinp T
[eh N x~cos A z+u(sh A x - % sin'x x)] (58)

The free oscillation of the bar after the shock is
with due allowance for (39):

= I Ap sin(pgon ¥HPp)(ch Agp x=cos Agn X~
-gsh kon xtsin Kon X) &59y

The cholce of time coordinates T after the shock is
such that t = 0 at tho end of the actual shock period,
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‘that is, the start of the free oscillation. Then T = ¢t - 7T
and the start of the free oscillations are according to
(59):

Vi = % 4, sin @p(ch Xgy x = cés Mop X -

- sh I\.on x'+ sin >\'On X) (60}

o3 -
T '

n ) .

BEeY,Te7

'~ &h Mp X + sin Ay x) (61)

These values of the deflection and rate of deflection
at the start of the free oscillation must agree with the
corresponding values for the termination of the actual
shock (57) and (58). To define the constants 4, and Dy
in (59), we then have:

Z An 8in 9p Mxon = 72-"€ (1 - cos p T) mx (62)
% 4n Pon €085 @n Mxyp = Iﬁ%‘; € pesinp Tmg (63)
Herein:

'r]xo =ch >\0n X~CcOs >\-on X"‘[Jaon(Sh >\0n x—-.sin }\,on X) =
1 A ~Aon¥
=2 [G.onx (1 + pon) + @ ™77 (1 = pon) -

¢thonX (1 - pepn 1) = o~ YonZ (1 + pon 1)] (64)

is the nth natural function of the free bar oscillation,*
and again by omitting index 1:

Mg = ch A x-cos Iy x+@ (sh A x = % sin N x) =

% [ékx(l + W+ e Az (1 - p)- 1kx(1 - U %%) -

_ _—1Ax (1 + H Kl)] (65)

*Slmpllficatlon of ponn~ -1 1s_purposely foregone, since
the exact value of mzq, in the ensuing series development
affords more simple results than the inaccurate one.
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the first natural function of the bar oscillation in pres-
ence of a longitudinal force.

The system Nxon is orthogonal and any function may

be expanded in convergent series conformably. (See V,1.)

Equations (62) and (63) in conjunction with multipli-

cation of MNXon and integration of =x =0 +to 1, give:
fl'n nx 4x
Ay sin Qp = i%; €(l~cos pT) °1 :on x (66)
S nzon dx

a . D s
Ap cos p=7-5 S5~ siap7T 2 (67)

Pon 1

The addition of the squares of these terms gives the coef-
ficients of the series expansion at

[
1 dx
a 2 B J Mxon Mx
An= 727 € V/F21~cos pT) + —— sin® prT 01 (68)
Pon

2 4
J nxon *
and the division of (66) by (69) gives the phase displace-
ment ©p at

Pon l ~ cos prT
P sin p T

tan Pp = (69)

The evaluation of the integrals is best effected with

the exponential form of the functions mnyx,, and nx.
Omitting the =n indices, we have:

1 \ - -
S Mgy My O ={l (1) ™0 [l_m— S = vkl
o -

4 AN, A=Ag
Al | Xl
lep == = 1+ &= -
N eikx + f:__zL e~1kx +

e
|
+
>/ -

o]

s

>l
1

&
o]
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e Yo~ MoE i A _Len  <AX
+.(‘1 .p.'°')° , E\-?xo ° MM g °

T TR TihNg
idox Ty AX 1-p -Ax
(1-poi)e [%;Koi ° Mhol
-y AL — AL —
Sl IR L ﬂx] .
i (-}\-."l'?\.o ) i (7\:"‘ ?\o )
- -1 A - Y
~(1l+pgide Pho¥ | 1y o' - —ETQT o -
=Nl AtAgi
~U
AL - M -
i- by iAx 1+ -ilx
e e r——— s o + e et
1(Rehg) 1(A=Ag) 3

Taking into consideration (32), (33) expressed in ex-
ponential form:

1 A1l
Mot re Mt (1w =0 (70)
A A ~inl 5
o (1 - W %%>-+ o 1h (L +w %& = 0 (71)
and the corresponding terms for function Mxop'
Ao L “Agl
e ° (1 + Bo) + o °" (1 - Mo) = O (72)
ih, 1 -iA, 1 o
el © (1 = pg 1)+ e *"o (L 4+ pg i) =0 (73)

The integral in the numerator of (68) reduces to

R
Aom =N Ag N

1
df Nz, Mx dx = 2 k;a(kpmhou)
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The integral in the denominator of (68) is:

2hoX 2 o 2MoX

w(1mpoi)® 1 o2 M y(rap 1 1 o~ 2ihox]

N [2 A x - (1+p,§)i1-;p,oi) e(l.+i)7\°x +
(1=pg) (l=pgi) -(1-1))\.03:
1l - i

(1+o) (1Huol) (1 =)oz
1 - 1 e

+

-+

1
(1=pg) (Ltpol) e—(1+1)kox]}
o

1+ 1

With a view to (72) and (73) this expression reduces
to:

fl ni dx = 1.
K )

The coefficients of the series are obtained from

L - 2 a c Kon 1
n = oo (A - Non uon)k‘ﬁg;f:ﬁﬁf -

— -
- r) ~//(1 - cos pT) + %5— sin® pT (74)

0n

At this time it is pointed out that all formulas de—
veloped in this section can be forthwith generalized for the
case of any original bar form by simply inserting tie _Z
sign at the right-hand side of (42) to (46), (56), (59)r
(62), (63), (66), (68), and.(74), and giving MN,A,p and p
the index n. n=1,2,3,..0 correspond to the fundamen-
tal oscillation, first, second, ... to the upper oscilla-
tion. However, for the reasons advanced in VI,1l, the in-
vestigation is confined to our specially selected bar form.
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Referring the shock period T to the oscillation pe~
riod T of the free fundamental oscillation, we obtain
with

01

and with dvne consideration to (55):
—2

pr=21b—--./1~a (76)

01

This enables us to compute the coefficients A4, for
different a and b from (74). (See table I.,) The =
values denote the magnitude of the shock load and the b
values the shock period,

The maximum b values are those at which- -the time
function of (57) reaches first its maximum, i.e6., at which
the maximum deflections are reached during the shock,

This occurs according to (57) for PpT =1, or according
to (76) when . :

01 1
= —— .
-X 24\/1 - g

-

(77)

The shock period b from (77) is plotted against ay in
figure 16, Given the coefiicients for the range 0 < pT <
m they are known for any values of pT, 3inasmuch as they
are periodic in pT.

A
The figures 100 K% cited in the last three columns

of table I give the amount of the particular coefficient
in percent of the first coefficient., The coefficients are
seen to converge very rapidly for small a and b wvalues
and somewhat more slowly for high a and b wvaluea, In
the range 0f 0 <« a « 0,50 the first three coefficients
suffice. The amount of the third coefficient is, at the
most, Qa3 percent of the first coefficients In the 0.5
< a « 0.99 range the first four coesfficients are suffi-
cient,. . The fourth coefficient is, at the most, 0.2 per-
cent of that of the first. For computing the deflections
even a lower céefficient would suffice, but for computing
the moments the coefficients Qf higher order grow in sig-
nificance as their factors X n increase with n,
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We show in table 1II the phase displacements ¢ as
computed from (69).

Taken absolute the maximum moment is decisive for the
estimation of the behavior of the dbar in dbuckling due to
shock load.. The 1/EJ time moments during the actual
shock period are, according to (56):

gig:la_aﬁlxa(l—coapt) %\\':z ch A x +
+ coa—}:x+u<§§ sh ?\.x+% sin Xx)_] (78)
and after the actual shock period according to-(59):
Qiz = 2 Ap Non sin [Pon(t-T)+9n] (ch Aoy £+°°S-Kon-x'"
3% n
~.8h Agp X-8in Aon X) - (79)
5

The maximum curvature aﬂz now occurs either during
or aftéer the msciual shock periode It can occur during the

actual shock only when the period lasts until the highest
possible deflection is reached, that is, when b has at
least reached the value givon in (77) If this happens

——

shock is, according to (78) and (36):

Fy _ 2a ]
max a2 T e N° [(r - a)(ch Ax+push Ax) +

+ecos ANx+p Sl = a sin N x] (80)

The place maximum of E;; {(taken absolute) occurs

when the place function E—gz, that is, the bracketed
< _

term in (80) reaches its maximum or ninimum. The maximum
of (1~ a) (eh Ax + w sh Ax) is reached when =x = 0, Dbe~

cause W < 0. Besides, since according to figure 11,
w1l = a 1is a true negative fractioxd, positive

cos A X + | J/l ~ a sin A x

can only occur within the lengths
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and ‘
EMTeceAMNx< ANl = 4,5 approximately.

Within these lengths the maximum of

cos Ax+ W /1~ asin Nx

a® mn
X
likewise occurs at =x = 0. The maximum of iz thus
oécurs at x = 0 and equals 2 - a, Figure 12 shows the

-
+ 4 ng

dx & _
the place function -é%} lies in the zone of cos Ax < O

naximunm =2 = e plotted against a. The minimum of

and sin AX >0, that is, % < AX < Te. It is more eas-

ily found when assuming that the effect of the two hyper-
2
T
bolic terms of —€J§ is small against the two trigonomet-~
x .

rical terms when approaching the minimum. ZFrom

. —~ w——— . = .
is (cos Az + 1 w/l -~ a sin A x) =

=N (= sia A X 4+ W 1_~'a_cos-x x) =0

the minimum is then obtained in the neighborhoad of
7\.x= ‘(‘:a\.n“:L U A | - a

2
d
The computed minima of place function ~E§§, taken

absolute, are shown in figure 12. (The figures lie around

X = 0.65.) They are seen to be lower than the maximum
values for 0 < a < 0.975, so that in this range the max-

az
imum 5—9 20ccurs at x =0, For 1 > a >0,975 the min-
X 4

imum of —E;% is decisive. For a = 0,99 its absolute

value is only le8 percent lower than the maxirum for the
same a value, so the assumed absolute maximum of the mo-
ment during the actual shock geriod will be accurate enough

N 1
for all a S 0,99 and b 2 =%} ———— when made propor-
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Dae - !
2

_ g m __:' a2 - a) =3 . |
it ol = 2 &\e " 2 L € . Oor because of
(49),

2 2

@Jg = e 11:72‘—*§—f“_ Eo (81)

9%® | pax : + u A

3®
The maximum of 5:2 after the actual ‘shock perlod

'must be defined by trial from (79) which, ‘although not un-
Ndvly difficult for a specific case, requires nevertheless

a large amount of paper work for such general investiga- -

tions as the present report. For this reason we determine
.¢on1y the upper limit value for maximum ~Z?ﬂ/ax2.

"' The place-maximum of the individual Nxey 11 (79) is
2 and occurs with x = 0. The time~maximum or ninirmm of
sin [pop (bt = T) + ¢n1 is - *1, As the Ap coefficients,

with .the etcept*on of the first, are negative, the assumed
absolute maximum of (79) cannot exzceed

i
The upper maximmnm in (82) is almost reached, at least

theoretically, according to the following. With due con-
sideration to Agpl (see V,2,b), (535) gives the ratio of

frequencles of the (n—l)th free higher oscillation to the
free fundamental oscillation almost exactly at

2 © 2 L
= 2 [A1 Nor '~ n§a An Monl : (82)

wl
m

max

.. s
Pon _ (4n + 1)
Poa 25

Within the period of 25 free fundamental oscillations, the
bar thus executes almost precisely:

8l 1s% free hlgher oscillations
169 24 i n
and 289 3d " = "

that is, produces a beat whose period is 25 T, Within the
t ime igterVal of 12.5 T after the sctual shock the wvalme

nex |20
X

to its upper maximum (82)., In view of the great number of
oscillation combinations during this interval and the fact

thus reaches its minimum deviation once relative
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that the frequencies increase with n, it may be assumed
-2
that the maximam of gg;%! occurs at an instant in which

almost or exactly

®1

it

sin {poz (t = 7) -« @]
and sin [Pon (b = T) = ¥4] = 31 are valid.

Hore it should be pointed out that in reality certain
discrepancles from the theoretical upper 1limit value given
in-(82§ are nevertheless to be expected; that is, in the
cases in which the theorctical minimum discrepancy from it
would occur oanly after a greater number of fundamental os-
cillationg. For, in fact, the degreec of dampling is already
appreciable and reduces the amplitudes. However, we pass
over the damping eifect, as stated in the beginning.

The cases in which tho maximum %Zn and those in
C

which its upper limit value after the actual shock are de-
cisive, are analyzed in VII,Z2.

b) Shock Load Greater than Eulerian Load

a > 1; (ag > 1)

With the initial conditions m, = 0, my = 0 for

t = 0, the solution in this case is analogous to the sec~
ond Euler case (reference 1):
= —2 __ ¢ (ech t - 1 83
Mg = ;-8 ¢ (b p ) (83)
where 2 8 +°
- B /- _ A ‘
P = A V/ oF Vfé -1= ponO? a =1 (84)

The couvrse of the further investigatibn agrees with
that for a < 1., The equation of the elastic line for the
actual shock period (t = T) is:

m=—2_¢(chpt - 1) ng (85)

At the end of the shoek (t = T), we have:
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., N n = -_;:——?-——i- € (ch pT - 1) MNx (86)

wﬁéreby Mx 1s given in (65).

For the condition after the shoeck (t = T)

-(59)- and for t = T (60) and (61) are applicable.

The Ap coefficients and the phase displacement ¢p
of the series (59) are obtained when equating the right-
hand sides of (86) and (60), respectively, (87) and (61)
with

2 a :
Ap = T € sn (Mg = Aon Hon)

a-l

on A Non N*/ on
and D chpT-~-1
tan OQn = oL SR T (89)
making
Xz e
PT=2mb2—,/a~1 (90)
h01

applicable because of (87) and (84).

The Ap coefficients have been tabulated for differ-
ent shock loads (a) and periods (b) in table III. The

A .
100 KE figures in the last three columns give the amount
1 ] >

of the respective coefficient in perbent of the first coef-
ficient.,

The coefficients converge quite well, and so much the
closer as a and b are smaller. The first four terms
suffice throughout the range investigated. The amount of
the fourth cocfficient is, at the most, 2 percent of that
of the first.

Table IV gives @pn for different a and De.
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The time function in (85) being aperiodic, the maxi-
mum deflection during the actual shock period is always
reached with + = 7. This instant, however, is also given
by (59) which decides the condition after the shock. Bear-
ing in mind that, contrary to range a.< 1, the time fune-
tion of the speed (87) is always positive at the instant
the shock stops and that, therefore, the deflections and
moments continue after the end of the shock, it is readily
al shock; consequently, the investigation may bde restrict—
ed to that of the 1/EJ-fold moments of (79).

As concerns the upper limit value of (79), the same
argumonts and the same formulas are applicabdle as for
a <« 1, that is, the vpper limit value of (79) is given by
(82). It occurs at x =0 1in spite of the fact that -
as seen in figure 12 - for a > 1 at the instant of in-
cipient free oscillations the maximum value of the moment
for x =0 is smaller than its assumed absolute minimum
value occurring at around =x = 0,65 1.

VII. RESULTS AND INTERPRETATION

l. Comparison with Static Case

The obvious criterion of the magnitude of moments in
buckling due to shock loads is the moment of the same bar
in static buckling stress. For this reason we shall at
first, attenpt to resolve the differential oequation for
static buckling of a bar of prescribed form. Thus we ef-
foct the calculation for tho bar conformadly to (46), for
-oxample, although it could bc given direct for thils par-
ticular case, as shown elgsewherec.

The differential cquation of statilc bucLlln is af-
forded from (8) when omitting the term with Jd°y/ot®, al-
though figure 13 reveals it even more elementary. It is

H=P N+ 7T - Tmax) - & (1 - x)
and consequently,

F P -
cat g n=g (& (L- 2 =P (7 - Inax)] (91)
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The homogensous equation,

3 P ' '

5;2— + ﬁ&- ’n = 0 (92)
resolvés to .

M= ¢ cos W x+ ¢z sin W x , (93)

wz

and consequently,
w2 =R - N (94)

because of (16) and P = = X. Equation (91) is resolved
by variation of the constants in (93), that is, from

m= ci(x) cos W x + ex(x) sin w x (95)

where

X  f£(x) u, dx
e (x) = f — 2 + k&,

X f(x) u, dx
c(x) = f (=) + kg
o uz' Uy -~ uy! vz

f(x) = }7]13 [A (L -x) =P (y =~ Vpax)]
u, = ¢co0s WX
v = 8in ®x

and kl and kp are constant values, The terms for ¥y
and yp.x are taken from (46) and (47). After appropriate

reductions and calculation of ¢ and cz, it gives
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A 1 |
n = P (1 = x =1 cos w x_ =~ ] sin ©.x) -

" .. —2
- ¥ + Tpax (1 - cos ® x) - € [ch AMx o+ NF cos Ax +

- —2
+ (sh Ax+ % sin A x> - (%5 + 1) (%? sin @ x + cos W xj]

+ k; cos W x + kp sin © x . (9s6)

The boundary condition m =0 for =x

Ii
o
0
[eR
4
(0]
/2]

ky; = 0; those of %2 =x=0 and m=0 for x=0 and

A
x =1 give two eguations for % and k,, thus yielding

with allowance for (32) and (33):

k 24
"'zﬁ-—-—.
W
and P )
A Xa
D= - A€ —-—-+l>
P K A
T A
The introduction of the values of k;, ks, and p in
(96) with consideration to (36) and (94) gives:
= € -2 A . A X ogin A
n = T oo [ech A x-cos A =t+u. (sh X - i¥31n x)] (97)

This term approaches o as a approaches the value 1.
Consequently, the Eulerian buckling load occurs at a =

—iéz = 1, as already explained in VI,3. Since then, X1l =

4,5 (about) according to figure 4, we obtain for the Eu-
lerian load the known value :

R

4.5 B~ 5 o2 ED
Pp = 4.5 L5 T 2 1 .3 (98)
independent from the original bar form.

The 1/EJ-fold moments arc obtaired in first approx-
imation from (97) at
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2
da . =2 2 e .

;2 ='§_m—5~—_KA [%;_ch Mx + cos A x +

2 ——
W u(;:_—;— sh A x + —2 sin A z)] (99)

Comparison with (80) reveals them to be exactly half
"as high as the time maxlimum of the 1/EJ—fold moments due
to shock load by a time~constant force, for an effective
period equal to half the period of the oscillations accom~
panying this load.

This result could equally have been obtained direct:
The solution (43) of (8) represents_at the same time the
resolution of (8) without the p F %;n term, when eguat-

ing My = k = constants; Then (44) becomes:
-} —
((ET N +X) RN+ XxerInmg=0,

hence,

€ X a
k="' pnioy = 4

EJN +X 1-a

Or, by the same argument, so long as the shock force
is constant in time and lower than the Eulerian load, the
oscillations are harmonic, If the bar form is such as to
insure only one definite oscillation ~ in the present case,
the fundamcntal - the mean position of the oscillatiom cor-
responds to the equilibrium position assumed by the bar
under static load. The mean position is reached after a
one fourth period; the position of potential total energy
and consequently of maximum deflections and moments is
reached after one half period. The oscillation being har-
monic, tho maximum deflections and moments are exactly
twice as groat as the corresponding magnitudes in the mean
position.

In tho genoral case, however, with the bar form such
as to produce a motion consisting of tho superposition of
sevoral normal oscillations, the motion of the individual

*That stresses due to "sudden" loads can become twice as-
high as in static loading, is a well~known fact, (Ponce-
let, Introduction a la Mecanigue industrielle, physique et
experimentale, 1830.)




)

42 N.A.C.A, Tochnical Memorahdum Ng. 749

bar particles is not synchronous, nor is there any condi-
tion in which the total energy has potential form, In this
case then there is no simple relationship between the de-
flections and moments produced during the period of load-
:ing due to static and to "sudden" loading.* The deflec~
tions and moments for the sitatic case are then obtained
from the corresponding magnitudes of the static case by
substituting .I—é—; €n for the time function my,, or, by
direct treatment of the static case. |

These considerations referred to cases of tension -
lower than the Eulorian load (a <1), TFor tonsions great-
er than the Bulcrian load (a < 1) the approximate equa-
t%on of the clastic line fails, as known (curvature =
d®y/dz®). Tor such cases the exact equation should be
used, i.e., write: : .

dzn
2 P 1
+ J—

dx o o=
3 EJ BJ
(Jr+ &)

instead of (91).

[AQ -x) =P(y=ypax)]  (100)

_The resdélution. of (100) is very difficult. Even a
second. approximation as attempted by Trefftz (reference:5)
. seems intractable in view of the complicated interference
- funetion of-(100), Added to this is the fact that when ef=
fecting the dynamic analysisé we also substituted its -
first approximative value & n/dx for the curvature., 4
comparison of the results of the dynamic study obtained in
first approximation with those of the statle study in sec~-
ond approximation would, however, not be logical.

*These explanations arc, according to Section 128 of Love-
Timpe'!s volume on elasticity. It states, among other
things that, in the gencral case "The distortion remains
less than twice the distortion existing in equilibrium po-
sition." This docs not secm strictly valid. It is woll
possibdle that at isolated points the distortion may be
greater than the twofold distortion existing in static equi-
librium poesition, evea if the encrgy of the whole bar,
whigh is governed by an integral term along the bar, is
‘not purely potential ‘at any instants. (Compare VII,2 of
this report, whickh contains similar deductions for the



W,

. H.A.C.:A, Technical Memorandum No. 749 43

e Under these clrcumstances we content ourselves with
‘cqmparing the static to the dynamic case for a < 1, while

,,for evaluating the results of the dynanmic case for a > 1,
‘we only adduce that of tho dynamic case for a < 1 in
comparison,

' 2, Numerical Comparison, Doductions..énd Examples

. "0n tho basis of the foregoing, the function for the
ﬁﬁmomcnt in tho static case for a< 1l 1is, according to (81):

day a N
= = 5,86 e — ¢ 101
axs nax T 1+ p.h 1 © ( )

The ratio of the meximum moments (taken absolute) in
the static and dynamic case is then, according to (8l) and
(101) for a < 1:

e = 2 o (162)

a) Provided the maximum moment occurs during the ac—
tual shock, and

b) Provided the upper 1limit of ¢ is according to
(82) and (lOl? .

- |
- 2
¢ = - 92342(1 A1) [, x01 ~ % An Noal - (103)

€°a)\.z

... TProm (102) and (103) it is seen that in our case the
assumed absolute ratio of the decisive moments in the dy-
namlec and static case is independent of the amount of orig-

inal eceentricity €, (4p/€, does not contain €,),

The evaluation of (103) affords the figures 14 to 20.
The particular tables have been omitted. Suffice it to say
that taking into account the terms of the series expansion
applied in table I, the amount of the term of maximum or-
dgr is, at the most, 2 percent of that of the first term,.

Figure 17 gives the ¢ values as ordinates, the D
values as abscissas in logarithmic scale. The a and ag
values (in parenthesis) are the parameters, The range of
sach curve was chosen so that the maximum shock period (b)
corresponds to the maximum deflection during the actual
shock period. (bpyx then corresponds to (77).)
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- . . . - . . Lo i . - IR
- ? . .4

Acc0rd1ng to figure 14 the stresses in short shock pe-
rivds-are lower than for an idéntical- static. stress, But
“4%"Longer shock periods the static stresses can be exceed-
ed consideraoly. :

The maximum ¢ values occur at shock periods COrreow
sponding to (77). They are, on the whole, greater than the
maximum - ¢ value of (102) for the same shock period,
Therefore, the maximum moments are sven then only to be ex=
pocted after the actual shogk perlod. when the greatest de-
flection possidble in this period is reached during the actu-
al shock period,

This somewhat confusing statement needs further expla-
nation, If the actuwal shock lasts just long enough to en-
sure the greatest deflection so that, as in our case only
one definite normal oscillation occurs, then the total on=-
ergy at the end of the shock is existent in the form of
deformation energy. During the free oscillations* follow-
ing the shock there is, therefore, no instant in which the
energy of deformation is greater than at the instant of
shock termination., Generally the first is even consisbtont=
ly lower than the latter for, aside from the type of supe
port according to the second Euleor case, there is no inte~-
gral ratio between fundamental and upper oscillation frew
guency, hence no instant during the free oscillations in
which the total energy is potential,

The result, according to which the upper boundary
value of the maximam moments after the shock is greater
than during the shock at the moment of maximum deflection,
is, however, readily understcod when bearing in mind that
the highest moment in a certain period does not necessari-
ly have to occur at the instant when the total energy is
energy of deformation. Rather, there may be instants in
which the superposition of oscillations may even induce
still higher moments, even though the concurrently existe
ing deformation energy of the whole bar -~ which, as is
known, is proporvional to the integral of the sguare of
the moment -~ is lower than the doformation enerby at the
end of the shocke

Figure 15, which is simply the modified figure 14,
reveals that in the range of higher shock loads the dynam~
ic stresses pertaining to the same shock periods increase
more slowly with increased shock load than the correspond-
ing static stresses (and vice versa).

. am o te— b v oy e

*Excepting the second Euler case, several free oscillations

occur as a rule after the shock even when only one defi-
nite oscillation exisgted during the shock.
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Contrariwise, figure 16 shows that the greatest pos-
sible ¢ <values increase with the shock loads wherebdy,
however, the shock periods (b) for these values increase
equally. In our case, when the shock period is long -
enough, the dynanmic 1oad may reach around 3.4 times that
of the static stress, whereas with vanishing shock load

the stress ig at the most, twice as high as the static

stresg,

. Figure 17 shows the shock periods (b) against shock.
load  (ag) for shock stress equal to static stress.
These shock periods are seen to increase slowly at first,
then faster, and to approach infinity in the neighborhood
of the Eulerian load.

Figure 18 shows ¢ against shock period for ay =
0770, together with periods exceeding those of (77?.
After becoming maximum, ¢ at first drops with increasing
shock period but can, of course, not drop below 2, since
this figure had already been reached once at the instant

of maximum deflection during the shock. Thus, starting
from a stated shock period ¢ =2 is valid, At still
longer shock periods, ¢ then increases again, etc. A%
other ap +values, the trend of the curve is quite similar,

To render the interprelation of the dynamic test data

'p0ssib1e in the a > 1 range, in view of the absence of

comparative base of static case, we plotted the dimension-

less quantities:

b

(o3

2 2 > 2
e L.A.l }\-01 - néz An >\’()11]

i

€

5

Ox

(see (82)), which are proportional to the upper boundary
values of the moments for the whole investigated range of
a and ap agalnst b in figure 19, with a and am as

parameters, abscissas and ordinates being given in loga-—
rithmic scale to ensure better survey. Figure 20 gives

the same results, but- D serves as parameter and the ap
values form the abscissas,. '

According to figure 22, there is no maximum moment
when a 2 1; the moments continue to iancrease with the
shock period, while for a « 1 the moments reach a maxi-
mum which may not be exceeded during any shock period.

The Eulerian buckling load (ag = 1) thus represecnts
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a remarkable boundary for the case of shock load. But,
while denotling a stadility limit for the static case, be~
yond which the bar fails,* it may be safely exceeded in
dynamic load provided the period of loading is short enough
and the crushing limit of the material is not exceeded
therebye To illustrate: If in our particular case the
shock period is 0.6 times the period of the free fundamen-
tal oscillation of the bar (b = 0.6), the maximum stress
upon exceeding the Euler load by about 17 percent (ap =
1.,167) 1is only about as high as the highest possidle
stress under a shock load, which is about 14 percecnt (aE
= 0,864) ©below the Buler load whereby, however, the lat-
ter is reached only with a longer shock period (b = 1.2).

To gain an insight into the order of magnitudes of
the shock periods T (egquivalent to the range of b val-

ues in this report) and the allowable maximum "relative
€
original occeniricitics® (5.886 1%)** several examples

have becen computed in table V.

From (75) and (54) follows:

2nmb /PF _ 32 .1 P
T=270 /0L 22 Ly /R 4
o BF 25w 1 E (104)

Besides, since our investigation applies only to con-
ditions 1ia which the stresses must remain below the pro-
portionalidy limit, it follows that

which may also be expressed as

€q BI ¥ lgi

P
< 0, - =
1 W €<, |ox =P g

maXx

and the highest permissible "relative original eccentric-
ity" is:

*The approxzimate differential equation of the problem is
based upon these arsuments. (See VII,1.)

**¥5pc oquation (48).
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€ Op = F -
5.86 -2 < 5.86 LN s (105)

| 1= EJy 1” |9m _

€ |9x° lnax
8
The EL ﬂ values are given in figure 19.
o |30 max

Table V gives (104) and (105) for a normal steel tube
of 48/1 mm diameter with a proportionality limit of op =
2,250 kg/cm®, for a high-tensile 24/1 mm diameter steel
tube with GP 4,200 kg/cm® oproportionality 1limit and a
48/1 mm diameter duralumin tube with Op = 1,400 kg/cm?,
each for a load stage 23 percent below and 16 7 percent
above the Eulerian load.,* Two bar lengths were considsred
for the lower stage; the shortest corresponds to the mini-
mum slenderness

= 4.5

b jot

E_
°p

to which the Eulerian load is yet applicadble (compare (98)),

the longest one to % = 200, A%t the upper stage only

l = 200 was considered, since the concept: boundary slen-

i
derness conformal to Buler, is without meaning.

It is seen that the permissible eccentricities de-
crease as the shock periods and loads increase., 4 crite-
rion for the evaluation of the computed eccentricities is
Miller-Breslau's recommended 2%6 = 0.,005.

The order of magnitude of the shock periods in the
analyzed examples is 0.001 to 0.07 second,

In reality it should be possible to exceed the eccen—~
tricities of (105) without danger, for the elongation and
elasticity limit decisive for the dynamic loads is proba-
bly higher than the corrospondi'1b limits for static loads
(reference 8), The execution of systematic studies for
the determination of the limit of dynamic elongation and

*The Op and B values are taken from A, Rechtlich!s re-
port published in the 1931 DVL Yearbook, pe. 379; and

Schroder's report as published in the 1928 DVL Yearbook,
Poe 21l6.
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elasticity of materials used in bridge and airplane design
. should be well worth while.

Likewise it is very desirable. to check the results of
this study by actual test. The writer hopes to be able
to do this in the near future.

3. Range of Validity of the Approximate
: v Differential Equation

' A check on whether and to what extent the use of the
PR
equation in which (%2) . was disregarded, is admissibdble.
, c 2
To this end we attempt to determine whether the (g%)

values are actually small agalnst 1. (See IV,5.)

The check may be confined to the maximum deflections
after the actual shock, since, a8 shown in VII,2, they are
nearly always greater than those during the shock,

Bquation (59) gives:

3 _ =

.52 = % Ay Aon sim (pop ¥ 4+ @) (sh Ay x

+ éih’%on X = ch Ap X + cos Agp X) (1086)

The individuwual place functions in this sum are maximum or
minimum for '

. :
d 2 .
E{9§-= fon (eh Aop X + cos Mop ¥
X
- sh Mp X = sin Agp %) =0
or Y
™ Mg X = cos Ay X (107)

when omitting the indices n and considering

=-AgX
ch g x = sh Ao x =98 ©

Equation (107) is resolved with

’\"O' X = .371-036,'- 5091'!’._.“' %h’ ~ —];4%72 e~ o

For the fundamental oscillation Ap 1 = =1 is appli-
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cable.  Consegquently, on becomes maximum elther for
L ox

% _ _4__)_(_._..1_..'._9_!'.3—-6- = Q4263

or
= £ X 391 = 0,995

L)
|
|
|

The evaluation gives:

dnx

S d =z

I

‘1,019 for ¥ = 0.263

dNx - . 1,434 for Z = 0,995
d x l

Hence % = Q0,995 is decisive for the fundamental oscilla-
tion, We substitute here % = 1,00 for which, likewiso,

%ﬂﬁ = approximately - 1,434 1is valid.

But for % = 1,00, the place functions of all higher

oscillations also reach = maximum or winimum, since the
higher solutions of {(107) agree with the higher proper
values of our differential eguation. Specifically, it is

max

dnzn| ~ 4n+l 4nt+l o T _
“ix = sin i m + cos e =2 sin = le4dl4

L

=NpX
e 97 =

since ch o x = sh A x

becomes negligibly small for higher values of Ag X.

By the same arguments as used in Vvi,3,a, we obtain as
upper limit value for max #Bﬂ/ax'

o]
‘—%nx— = 1.434 Al )\,01 - 1.414 n§2 .A.n }\.on (108)

Now l%%‘ %; can be computed fiom (108) by means of tables

€
I and III, which contain the g% values., For 7% the
permissible eccentricitiles (see VII,2) must be included,
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This calculation was carried through for the examples
of table V and compiled -in tadlc VI,

Limiting the eccgntricity :%% so as to keep the stress-
es during the shock below the proﬁortiopality limit, the
Ig%l values for a stated bar and stg?gdlghock load scarce-
ly depend on the shock period; furthermore, the'igg val-

ues aBove the Bulerian limit.are even-smaller than those
below it.

2
In the examples the maximum is (gg) = 0,082° = 0.007

for a high=tensile steel tude (24 X 1L mm, 1 = 163 cm,
Pg = 750 kg) at a = 0.77 cand. b = 0,10, that is, for a
comparatively small shock load and shock périod. Even

this max Kg% may be summarily disregardod against 1.
The use of the'appfoxihate'différential egquation ig
herewith proved as Justified,
APPENDIX
Derivation of the interference functions for the sec~
ond and third Tuler case.

For the pin-ondod support as shown in figure 21, we

have: for x = the differential cquatior of the elas-
tic line, becausec of
. M;éx+Pn=l—f—--§~x+Pﬂ
at 3
a’n 1= ¢
_— T2 e el X
which resolved, becomes:
"M = A sin® x4+ B cos W x = L;%-é
‘ EJ

The limit comndition m =0 for x =0 gives 3B = 0., Con~
sequently,
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;_, R n ?-Aféiﬁ‘w x ~'l§%;L x (109)

?@E'.ilffé ‘the differential equation 1a:
| 1=t .
E J + P n =~ x+ (z~ f)

and its resolution is

-— . —

m =4 8in @ x + B cos ® X - %?%_2 ¢

The 1limit condition m =0 for x =1 gives:

consequently,
1L - x

m=4 (sin W x = tan ® l cos wx) - ST (110)

The determination of constants A and A follows fronm
the continuity conditiong at x =¢. For this point the
m values of (109) and (110), as well as their first de-
‘tivatives, must be mutually equale  Bquating (109) and
(110) for =x = { gives:

= A (1~ tan @ 1 cot w £) (111)

Equating the first derivative gives:

Acos W E{ - & (cosw £ + tan W 1 gin @ £) = ga (112)

Then (111) and (112) yield:

i=- sin o £
Pw tan w

A = sin 0 (1 - §)
Pwsinowl

and (109) and (110) become:

= sinw( = £) . - 1=t <
K (x,€) = 8% Sig sy sin o x g% for x £ ¢

K , = s8in.w (1 x) -l-x ]
r(z. £) Po sinwl ¢ ‘ P *

v
e
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where we use 7 in place of K(x,f{)s As seen, the core
. functions in x and §{ -actually are symmetrical.

At the expense of much more paper work, although fun~
damentally with the same degree of accuracy as in the case
of figure 21, the core functions may be obtained for other
support conditions. For the bar clamped at one end and
hinged at the other, for example (see fig. 22), the un-
known support presgsure . occurs in addition to the four
constants A, B, A, and B, The conditions for resolving
these five gquantities are:

m, =0 for x =20
Ny = 0 u x =1
my =M " x=¢
ne' =0 " x=1
et =t oz =k

wherein subsdripts- 1 and r denote the parts of the
elastic line on the left and right-hand side of x = §,
The calculation gives the following symmetrical core funce
tions: ~ :



For xég

1 £ sin w x+x sin wé-wx fcos wl -(%)- sinw (§-1) +wl cos -w(f-l)] sinwx  x
Ky (x,t) = P sin w?' = wl cos wl k3
for x 2 §

1 x sin wi+f sin wx-wx § cos wl ":—) sinw(x-1) +wl cos wix- 1)]Sin wf ¢
Kp(x, = = T TF
r(x,¢) P sin wl - wl cos wl. F

YIO'V'N

*oN mn-p.u'e:t OWORN TBOTUYDOO ]

6V

2g
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TABLE I. Coefficients Apn of Series (59) for a< 1
: ’ A
a b A 100 22
i €o i Az
=1 n=2 n=3 =4 n=2 n=3 n=4
Ppercent
0.25' 0,10 0.159(~-0,00052|~0.00008 0+33 0,05
030 04453|~0,00282|~0,00054 0.62 0,12
0.556 0.,632{=0.004881~0.,00095 0677 0,15
0.50| 0410 0.6349({=0,00263;=0.00036 0.75 0.10
0.25 0.,896|~0,0113 i-0,00188 1,26 0,21
0.50 1.694(=0,0291 |=0,00505 1,72 0.30
0,651 1,863|=0,0332 |~0,00572 1,78 0.31 .
0,75 0,10 04571 |=0.00746i=0.000964=0.00025| 131 0,17 0,04
0.30 1.962({=0.04595|=0.00724|=~0.00199|2,34 0.37 0,10
0+50 3¢595(=~041028 [=0,01658|=~0,00460/R86 0445 0,13
0.859 5eR32|=0,1622 |=0,02636|=0,00733| 311 0,00 0,14
0.84f 0,10 0,680|=0,0103 |=0,00132({~0,00028|1.51 0,19 0,04
0.25 1,928 |=0.,0470 |=0,00725|=0.0019312.44 0.38 0,10
0.75 7e¢565(=0,266 ~0.0431 |~0.0120 | 3,48 0,57 0.16
1.040 8.972|=0,322 =0,0520 |=0.0146 |3.,58 0,58 Q.16
0691 010 06771 | =0,0137 |[=0,00167|=0,00042;1.78 0.22 0,05
0.25 2.245|=0,064 ~0.,00939 |~0.00247|2.84 0,42 0.11
0.50 5.94 |=0.222 ~0.0340 |~0.00902| 3474 0,57 0.15
0,75 10.50 ~0.426 ~0,0657 |=0,01745{4,06 0463 0.17
1.00 14,58 |=04610 =0.0940 [=0.02500|4.18 0.64 0.1%7
1,34 16,90 |=0.716 «0,1106 {=0,02940|4e24 04,65 0,17
0695 0,10 0.819|=0.0159 |=0,00189 |~0.00047{1s94 0,23 0,086
0«25 24425|=0,0748 [~0,01062|~0,00280|3.08 0,44 0,12
0. 50 64695 |=0,2695 [|=0,0399 |=0.,010680|4.02 0,60 0,15
0.75 12,64 [=0,551l5 1=0,0823 {~0,02195{4.36 0,65 0,17
1.50 29443 [=1,355 042027 [=0.0541 | 4,60 0,569 0,18
1,764 31403 |=1,432 =0 2144 [=0,0572 |4.61 0,69 0,19
099 06,10 04877 |=»0,0185 [=04,0022 [=0,00043[2e1ll 0,25 0,05
0450 767 |=0,3333 |=0,0485 |=0,0105 14,34 0,63 0.14
1,00 26,00 [=1,257 ~0,185 ~0,0403 |4.84 0,71 0,16
1.50 53,05 [=2.622 -0,388 =0,0845 [4.,95 0,73 016
2400 B4,50 |=4,21 [=04623 1=041358 [14.98 0,74 0,16
2650 115,20 [|=5,76 1=0.852 ~0e1858 5,00 0,74 0,16
3400 [139.9 -7.01 1=1,038 ~042260 5,02 0,74 0416
3450 [{154,9 =776 i=le149 ~0,2510 [ 5402 0474 0,16
3.84511568,0 -7.93 el gl73 =0.2560 5402 0474 0,16
|
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TABLE II., Phase Displacements ¢n of Series (59)
for a <l
Pn
& P n=1 n=2 n=>5 =2
0.25 0.10 0.3131 0.810 1.144
0,30 0.8988 1.330 1.454
04556 /2 /2 /2.
0450 0410 043097 0.783 1.122
0.25 0.7242 1,224 1.398
0.50 1,2588 1.468 1.521
0,651 /2 - /2 m/2
0.75 0.10 0.3074 0,799 1.134 1.304
0.30 9.8969 1,176 14430 1.48¢9
0.50 1,1489 1,433 1.504 1,532
0.859 /2 /2 m/2 m/2
0.84 0.10 0.3127 0.809 1410 1.309
0.25 0.7004 1.220 1.414 1.469
0.50 1.1111 1,419 1.505 1.528
0.75 1.3638 1.505 1.543 1.553
1,038 /2 /2 /2 n/2
0.91 0.l 03589 0.796 1,131 1.303
0.25 0.6820 1,208 1,391 1,465
0450 1.0597 1.400 1.488 1.522
0475 1.2716 1,476 1.525 1,544
1,00 1,4153 1,523 1,598 1,557
1.34 /2 /2 /2 /2
0.95 0.10 0.3043 0.794 1,131 1.302
0425 0.6729 1.202 1.388 1.463
0450 1.0339 1.389 1.483 1.519
0.75 1.2255 1e447 1.518 1,540
1.00 1.3448 14500 1.536 1,551
1.50 1.5030 1.550 1.561 1.565
1,764 m/e /2 m/2 /2
0.99 0410 043020 0,790 1,112 1,300
0450 1,000 1,379 1,474 1.516
1,00 1.2787 1.478 1.525 1.595
1450 1.3878 1.514 1,542 1.555
2.00 1.4493 1,533 1,562 14580
2450 1.4910 1,546 1.558 1.564
3400 1.5290 1,554 1.563 1.566
3450 1.552 1.565 - 1,568 1.569
34845 /2 /2 m/2 /2 -
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TABLE IIl1. Coefficients Ay of Series (59) for a >1
A e - - .. . . ] A,
e 100 —=
a b /] . 1
=1 =2 =3 =4 n=2 |n=3 |n=4
Percent
1,01{0.,10 0.911}-0,0201[~0,00230{~0.00028]2,2110425{0,03
0.25 2.768{=0.,0969{~0.01338|~0.00173| 3.50{0,48[0,06
0.50 8020 |~0,371 |=~0,0532 |~0.,0070 }4,52|0,65|0,09
0s75 | 17,22 |=0.843 |~-0,1219 {~0,016 4,7610,71{0.09
1,00 | 30.4 ~1.530 {~0.2220 |~0.,029 5,03{0,73|0410
1,50 | 71.5 -3.688 |=0,536 -0.,070 5.,16{0,75|0.,10
2400 38,7 ~-7.21 -1,048 ~0,137 5,20]0476{0410
1,05/ 0,10 0.974{=0.0238|=0,0026 {-0,00064}2.44 OQ27 0,07
0«25 3.025{~0,1163{=0,0155 |~0,00393| 3.85|0451{0,13
0«30 9.44 |~0.466 |~0,0645 |~0.01652]|4,94{0.,68}0,.,18
Oe75 | 2147 |[~1.140 |=0,1593 |~0.,0408 | 5.31{0,74|0,19
1.00 | 41.9 =24285 |=0,3205 |~0.,0823 | 5,46]0477{0420
1,09|0610 1,072 |=040293|=0.00314)«0,00075 2,73]0429|0,07
O.25 3¢414|~0,1448{=0,01858{~0,0047 |4,24(0.54({0.,14
0e50 | 11e36 [|=0,617 [=0.0818 |~0.0209 |5,44|0.72{0.18
O0e75 | 28420 |~1.629 {=0,2195 | ~0.,0561 |5,78|0478|0420
1s00 [ 61le70 |=3.660 [=0,4930 |=0.,1262 |5,93]0480{0,20
TABLE IV, Phase Displacements ¢y of Saries (59) for a >
a b b
n=1 n=2 n=3 n=4
1.01 0.10 0.3010 0.788 14126 1.307
0.25 06630 1.349 1e.427 1.464
0.50 0.9949 1,452 1.476 1,516
0.75 1,1573 1,490 1,506 1.534
1.00 1,2457 14509 l.521 1.5423
1450 1.3360 1,527 1.536 1.551
2,00 1.,3788 1,535 14542 1.554
l.05 0.10 0.3024 0.802 1,127 1,300
0.25 0e6571 1,198 1,381 1.459
0.50 0.9703 1,367 1.470 1,511
0,75 141117 1,423 1.498 l.528
1.00 1,1823 1.448 1.510 1,535
1,09 0.10 0.3024 ‘0,786 1,130 1,300
‘0425 0.6473 l1.184 1,378 1,457
0.50 09413 1,350 1,464 1,508
0,75 1,0630 14401 1,489 1.523
1.00 l.1164 1l.422 14499 l.528
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TABLE V. .-Illustrative Examples of Highest Pormissible Rela-
tive Orig}nal Eceentricities Vmamh for Different

. Tubes Under Difforcnt Shock Loads P and Differont
Shock Poriods .

’ JB = 2X10° kg/cnf
Steel tube 48/1 n_lm LO'P = 2250 "

k=134 1 = 200
ag b PE=3330 kg-{i - PE=1500 kgq i
. 1 = 223 em 1l = 232 em
P T Z%%; P T XQ%L
kg s kg 8
0.10 0.0024 | 0.0126 0.0054 | 0,0533
0425 0.0061 | 0,0042 0.0136 | 0,0179
0450 0.0122 | 0.0016 0.0271 | 040070
04770 2560 1160
075 0.,0183 | 0.0010 C.0406 | 0.0043
1,04 0.,0254 | 0,0009 0.,0564 | 0,003%
0.10 : 0.C054 | 0.0234.
0.25 0.0136 | 0.0069
0.50 0.,0271 | 0.0020
1,167 1755
0.75 0,0406 | 0.0008
1,00 0.,0542 | 0.0003
(mm X 03937 = in,) (ecm X 3937 = 4in,)

(kg X 2,20462 = 1lb,) (kg/cm® X 14,2235 = 1b./sq.in.)
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TABLE V (continued)
= E = 2X10° kg/cm®
Steel tube 24/1 mm.{db A / en”
L= gg L = 200
ag b Pg=3050 kg-{i Pp=750 kg {1
1 = 80 ¢cnm 1 = 163 ¢en
P T me\_.x_ P T Vz.e_ba-.zc_
kg 8 kg 8
0.10 0.0006 | 0.,0167 0.0027 | 0.1214
0.25 0.,0016 | 0.0056 0.0067 | 0.0409
0.50 0.0032 | 0,0022 0.013% | 0.,0160
0,770 2345 565
0.75 0.0048 | 0.0014 0.0200 | C.0100
1.04 0.0067 | 0.,0011 0.0277 | 0.0084
0.10 0.0027 | 0.0649
0425 0.0067 | 0,0191
0.50 0.0133 | 0.0055
1.167 855
0e75 0.0200 | 0.0022
1.00 0.0266 | 0.,0010
T ”'“;ff Lumin bube 48/1 B = 0.75X10° kg/ci
uraltmin ube ® mm {GP - 1 400 ]
i
L t=10a [ %= 200
ax b Pp=2060 kg i i PE=560 kg |
b= 173 cm! l = 332 cm
3 T ymax | p T Imax
A 1
kg 8 kg 8
0410 0.0014 | 0,0165 0.0053 | 0.1068
0.25 0.0036 | 0,0056 0.0132 | 0.0360
0.50 0.0072 | 0.0022 0.0264 | 0.,0141
0.770 1586 435
0475 0.0108 | 0.0014; 0.0396 | 0.0087
1.04 0.0149 | 0.0011 0.0549 | 0.,0074
0.10 0.0053 | 0.0561
0425 0.0132 | 0.0165
0.50 0.0264 | 0.0047
1,167 655
0.75 0.0396 | 0.0019
1,00 0.0530 | 0,0009
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_ an
TABLE VI, Upper Limit Values of 5x| for
the Examples of Tabdle V - ‘
Upper limit of ]an/axl for
Steel tubeiStesl tudbe!Duralumin tude
diameter diameter diameter
48Xl mm 24X1 mm 48Xl mm
a ag b Pg=1500 kg| Pp=750 kg| Py = 560 kg
1 = 332 cm =163 cm 1 = 332 cm
L= L L=
i 200 i 200 ) 200
v
Eccentricity ~%%§ according
to tadble V
0.84 0.770 04,10 0.036 0,082 0.072
0,25 0,034 0.080 0.070
0,50 0.034 0,079 0.069
0.75 0.034 0.079 0,068
1,04 0.034 0,075 0.068
1,09 1.167 04,10 0,026 0.070 0.061
0.25 0,025 0,089 0.059
0.50 0.024 0,087 0,058
0475 0.024 0.,087 0.058
1,00 0.020 0.0867 0.058

Translation by J. Vanier,
National Advisory Committes

for Aeronautics.
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Figs. 12,1b»,2,3
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Figs. 4,5,6
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Figure 7.-Reduction factor % versus a.
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Figure 8.-Deviations of bar from straight lianc (according to (49) for
x=1, x =3/41 , and x =1/2 lversus a.
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Figure 9.-Equation (52).
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Figure 12.-Maximum and minimum Figure 13.-Elastic line
(absolute)of 4°Nx versus a. of a bar
dx : supported according to

2'd Eylerian load case
and under force P with
a given eccentricity.
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Figs., 14,15
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Figure 16.-Maximum possible c(for constant shock force and support ac-~
cording to 3F¢ Euler case)and ¢ values(shock period)versus ag.
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Figure 17.-Shock period (b) for different (ap) at which static and dy-
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Figure 18.-Ratio ¢ for ap = 0,77 and a greater range of shock period (b),
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Figure 21.-Elastic line of bar hinged at either end and stressed in
compression P and single transverse load 1.
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Figure 22.-Blastic line of bar clamped at one and hinged at the other

end under load P and a single transverse load 1,
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